Five-Dimensional Path Integrals for Six-Dimensional Conformal Field Theories


In this paper we derive Ward-Takahashi identities from the path integral of supersymmetric five-dimensional field theories with an $SU(1,3)$ spacetime symmetry in the presence of instantons. We explicitly show how $SU(1,3)$ is enhanced to $SU(1,3)\times U(1)$ where the additional $U(1)$ acts non-perturbatively. Solutions to such Ward-Takahashi identities were previously obtained from correlators of six-dimensional Lorentzian conformal field theories but where the instanton number was replaced by the momentum along a null direction. Here we study the reverse procedure whereby we construct correlation functions out of towers of five-dimensional operators which satisfy the Ward-Takahashi identities of a six-dimensional conformal field theory. This paves the way to computing observables in six dimensions using five-dimensional path integral techniques. We also argue that, once the instanton sector is included into the path integral, the coupling of the five-dimensional Lagrangian must be quantised, leaving no free continuous parameters.

Journal of High Energy Physics 02 (2022) 151
Rishi Mouland
Rishi Mouland
Research Associate in High Energy Theoretical Physics

My research interests include string theory, M-theory and conformal field theory